Advances in semi-automated high-throughput image data collection routines, coupled with a decline in storage costs and an increase in high-performance computing solutions have led to an exponential surge in data collected by biomedical scientists and medical practitioners. Interpreting this raw data is a challenging task, and nowhere is this more evident than in the field of opthalmology. The sheer speed at which data on cataracts, diabetic retinopathy, glaucoma and other eye disorders are collected, makes it impossible for the human observer to directly monitor subtle, yet critical details. This book is a novel and well-timed endeavor to present, in an amalgamated format, computational image modeling methods as applied to various extrinsic scientific problems in ophthalmology. It is self-contained and presents a highly comprehensive array of image modeling algorithms and methodologies relevant to ophthalmologic problems. The book is the first of its kind, bringing eye imaging and multi-dimensional hyperspectral imaging and data fusion of the human eye, into focus. The editors are at the top of their fields and bring a strong multidisciplinary synergy to this visionary volume. Their “inverted-pyramid " approach in presenting the content, and focus on core applications, will appeal to students and practitioners in the field.