Lower than average rainfall during late 1997 and early 1998 in Majuro Atoll, Republic of the Marshall Islands, caused a drought and severe drinking-water shortage. Majuro depends on a public rainfall catchment system, which uses an airport runway and storage reservoirs. The storage reservoirs can supply water for about 30 to 50 days without replenishment. In February 1998, after a few months with less than one inch of rainfall per month, a drought-related disaster was declared. Reverse-osmosis water-purification systems were brought to Majuro to help alleviate the water shortage. Concurrent with the water-purification program, ground water from a freshwater lens in the Laura area of the atoll was pumped at increased rates. Of the total consumed water during this period, ground water from Laura supplied between 90 percent (March 1998) and 64 percent (May 1998) of the drinking water. Due to public concern, a study was initiated to determine the effects of the drought on the freshwater lens. The areal extent of the freshwater lens is about 350 acres. A monitoring-well network, consisting of multiple wells driven to varying depths at 11 sites, was installed to determine the thickness of the freshwater lens. Similar locations relative to an earlier study were chosen so that the data from this study could be compared to 1984-85 data. At the end of the drought in June 1998, the freshwater near the middle of the lens was about 45 feet thick; and at the north and south ends, the freshwater was about 25 to 38 feet thick, respectively. Monitoring of the freshwater lens was continued through the wet season following the drought. The lens increased in thickness by 1 to 8 feet after 7 months of rainfall. Greater increases in lens thickness were measured on the lagoon side than on the ocean side of the freshwater lens. Lens thickness during August 1998, and seasonal variation of lens thickness in 1998, were compared to data collected in 1984-85. Comparison of lens thickness from the different years yielded an inconsistent result; the lens was not uniformly thicker in 1984-85 despite more rainfall and little or no pumpage during this time. Seasonal variation in 1998-99 was greater than seasonal variation in 1984-85 due to differences in seasonal rainfall and pumpage. The change in lens thickness suggested by the comparison between 1998-99 and 1984-85 data was complicated by effects due to different well locations, different wells, and assumed small-scale variability in the thickness of fine and coarse calcareous sediments. This result suggests that a monitoring program that uses the same wells through time is needed to adequately describe long-term variability in lens thickness.